$-5+3x=7x+1$
$3x-7x = 5+1$
$-4x = 6$
$\frac{1}{-4} \times (-4x) = 6 \times \frac{1}{-4}$
$x = -\frac{6}{4} = -\frac{3}{2}$
$\boldsymbol{S = \{-\frac{3}{2}\}}$
$\frac{x}{4}-\frac{7x}{2}=\frac{8x}{32}-2$
$\frac{x}{4}-\frac{14x}{4}=\frac{x}{4}-2$
$4 \times (\frac{x-14x}{4}) = (\frac{x-8}{4}) \times 4$
$x-14x = x-8$
$-14x = -8$
$x = \frac{8}{14} = \frac{4}{7}$
$\boldsymbol{S = \{\frac{4}{7}\}}$
$-\frac{2}{5}(-4x-5)=\frac{x}{2}+2$
$\frac{8}{5}x + 2 = \frac{x}{2} + 2$
$\frac{16}{10}x + \frac{20}{10} = \frac{5x}{10} + \frac{20}{10}$
$10 \times (\frac{16x+20}{10}) = (\frac{5x+20}{10}) \times 10$
$16x+20 = 5x+20$
$16x-5x = 0$
$11x = 0$
$\frac{1}{11} \times 11x = 0 \times \frac{1}{11}$
$x=0$
$\boldsymbol{S = \{0\}}$
$1+x\sqrt{5}=2x-\sqrt{2}$
$-2x+x\sqrt{5} = -1-\sqrt{2}$
$x(-2+\sqrt{5}) = -1-\sqrt{2}$
$\frac{1}{-2+\sqrt{5}} \times x(-2+\sqrt{5}) = (-1-\sqrt{2}) \times \frac{1}{-2+\sqrt{5}}$
$x = \frac{-1-\sqrt{2}}{-2+\sqrt{5}} = \frac{1+\sqrt{2}}{2-\sqrt{5}}$
$\boldsymbol{S = \{\frac{1+\sqrt{2}}{2-\sqrt{5}}\}}$